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Over the past decade and a half, analyses of the dynamics of fluids containing 
moving contact lines have specified hydrodynamic models of the fluids in a rather 
small region surrounding the contact lines (referred to as the inner region) which 
necessarily differ from the usual model. If this were not done, a singularity would 
have arisen, making it impossible to satisfy the contact-angle boundary condition, a 
condition that can be important for determining the shape of the fluid interface of 
the entire body of fluid (the outer region). Unfortunately, the nature of the fluids 
within the inner region under dynamic conditions has not received appreciable 
experimental attention. Consequently, the validity of these novel models has yet to 
be tested. 

The objective of this experimental investigation is to determine the validity of the 
expression appearing in the literature for the slope of the fluid interface in the region 
of overlap between the inner and outer regions, for small capillary number. This in 
part involves the experimental determination of a constant traditionally evaluated 
by matching the solutions in the inner and outer regions. Establishing the correctness 
of this expression would justify its use as a boundary condition for the shape of the 
fluid interface in the outer region, thus eliminating the need to analyse the dynamics 
of the fluid in the inner region. 

Our experiments consisted of immersing a glass tube, tilted at  an angle to the 
horizontal, at  a constant speed, into a bath of silicone oil. The slope of the air-silicone 
oil interface was measured at distances from the contact line ranging between 0 . 0 1 3 ~  
and 0.17a, where a denotes the capillary length, the lengthscale of the outer region 
(151 1 pm). Experiments were performed at speeds corresponding to capillary 
numbers ranging between 2.8 x and 8.3 x lop3. Good agreement is achieved 
between theory and experiment, with a systematic deviation appearing only at the 
highest speed. The latter may be a consequence of the inadequacy of the theory at  
that value of the capillary number. 

1. Introduction 
It has been recognized in recent years that fluid mechanics problems containing 

moving contact lines are not typical. They represent a class of problems consisting 
of two or more immiscible fluids, each partially covering a solid surface, whose 
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dynamics cannot be fully analysed using the assumptions commonly associated with 
incompressible, immiscible, Newtonian fluids. This is not unusual in itself; for 
example, many fluids are known to be non-Newtonian. Its atypical aspect arises from 
the fact that the inadequacy of these assumptions disappears in situations devoid of 
moving contact lines. 

As often happens in fluid mechanics, it has been the appearance of a singularity a t  
the moving contact line which has signalled the inappropriateness of the model cited 
above. However, not all problems containing moving contact lines are affected 
equally by the presence of this singularity. General experience has shown that the 
impact of the singularity usually correlates well with that of surface tension. When 
surface tension plays a significant role, the fluid interface needs a boundary condition 
at the contact line. The natural boundary condition is the specification of the contact 
angle, the angle formed between the local tangent planes of the solid surface and the 
fluid interface. While there is'no controversy concerning the use of the contact angle 
as a boundary condition in the absence of fluid motion, i t  is impossible to use i t  as 
a boundary condition in dynamic situations owing to the presence of the singularity. 
Consequently, problems greatly influenced by the contact angle usually represent a 
class significantly affected by the presence of the singularity a t  the moving contact 
line. 

The obvious question which arises concerns the necessary modifications of the 
model of the fluids, and or solid surface, near the moving contact line which would 
remove the singularity. Lack of knowledge of such a model would seem to preclude 
performing predictive analyses of the behaviour of fluids containing moving contact 
lines. One popular approach has been to alter the usual hydrodynamic model by 
replacing the no-slip with a slip boundary condition. Various slip boundary 
conditions have been tried, the most popular being the one identified by Navier in 
1823 (Goldstein 1938) before the extent of the success of the no-slip boundary 
condition was appreciated, 

7 -  Tn = Pz-u. 

Here, n denotes the unit outward normal to  the solid ; 7 denotes u/lul; u and T denote 
the velocity field and the stress tensor evaluated a t  the solid surface, respectively ; 
and p ,  a constant, is often referred to as the slip coefficient. There are situations when 
contact lines are not present in which this boundary condition is recognized to be 
appropriate, the most notable being the case of rarefied gases, i.e. when the mean free 
path of the gas molecules becomes comparable with the characteristic lengthscale of 
the problem. A slip boundary condition has also been derived for systems consisting 
of non-dilute multi-component gases a t  standard temperature and pressure (Jackson 
1977). I n  this latter case, it is of interest to note that using the no-slip boundary 
condition on the mass-averaged velocity, the velocity appearing in the NavierStokes 
equation, can lead to  substantial error. In  the context of the moving contact line, a 
derivation of p has been presented based upon an idealized model of a rough solid 
surface (Hocking 1976). Other slip boundary conditions, besides Navier's, have been 
proposed involving relationships between the shear stress and speed of the fluid at 
the solid surface (Huh & Mason 1977 ; Durbin 1988). These have been motivated by 
heuristic molecular models in which the strengths of the liquid-liquid and fluid-solid 
molecular bonds play a central role. Still another approach has been to explicitly 
prescribe the velocity of the fluid a t  the solid surface in such a way that the 
singularity at the moving contact line is removed, while preserving the no-slip 
condition away from the contact line (Dussan V. 1976). 

There have also been investigations of the dynamics of the fluids in the immediate 
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vicinity of the moving contact line which do not presuppose that the fluids slip along 
the solid surface. Jansons (1986) assumes that the dynamics of the fluids within this 
small region are fundamentally unsteady owing to the microscopic roughness (on a 
continuum lengthscale) which is always present on the solid surface. He argues, 
based upon results from hydrodynamic analyses aimed at capturing the essence of 
various aspects of his idealization of the unsteady motion, that its impact on the 
dynamics of the fluid, as viewed from a much larger lengthscale, is equivalent to 
steady flow in the neighbourhood of the contact line with a slip boundary condition. 
However, the most fundamental attempts at exploring the physics of the fluids in the 
immediate vicinity of the moving contact line have been the molecular dynamics 
simulations by Koplik, Banavar & Willemsen (1988), and Thompson & Robbins 
(1989). Both studies follow the dynamics of approximately 1500 atoms, confined 
between two parallel walls separated by about 15 atomic spacings, in which the 
interactions between atoms are modelled with a modified Lennard-Jones potential. 
By altering the potential for interactions between like and unlike atoms, they are 
able to create a system consisting of two immiscible fluids and solid. They determine 
the velocity fields by dividing the confined region containing the atoms into bins, and 
by time averaging the instantaneous velocities of the atoms within each bin. Both 
studies obtain overall velocity fields in general agreement with solutions to the 
Navier-Stokes equation assuming the no-slip boundary condition (the former study 
simulates a Poiseuille-like flow, while the latter simulates a Couette-like flow), except 
within about two atomic spacings of the moving contact line, where the fluids slip 
along the solid surface, a region within which Thompson & Robbins find indications 
that the applicability of ‘local hydrodynamic theory breaks down’. In spite of the 
latter, Thompson & Robbins find that the velocity field obtained from their 
molecular dynamics simulation agrees well with the solution of the Navier-Stokes 
equation assuming the fluid slips at the solid surface in the vicinity of the contact 
line, with slip length equalling about two atomic spacings. 

It is of interest, as well as central to the nature of this investigation, to note that 
although the slip boundary conditions mentioned above are motivated by a diverse 
set of physical models, their effect is the same on the overall dynamics of the entire 
fluid body, i.e. the fluid in the outer region. This assumes, of course, the characteristic 
lengthscale of the outer region is large compared to that of the inner region, the region 
within which a significant amount of slip occurs. The lengthscale of this latter region 
will be referred to as the slip length L,. As discussed in Ngan & Dussan V. (1989), the 
physics of the inner region (that is to say, choice of slip boundary condition, size of 
slip length, and dynamic behaviour of the ‘actual’ contact angle, 8), at small 
capillary and negligible Reynolds numbers, affects the dynamics of the fluids in the 
outer region only through the value of a, where 

a = @+- u 8-cos@sino[ h?+l L, ] +Z,(@) } . 
pu( 2sin8 

Here, a denotes the lengthscale of the outer region, p denotes the viscosity of the 
liquid,? U denotes the speed of the contact line, u denotes the surface tension, and 
la(@) represents a function which depends on the form of the slip boundary 
conditions. This assertion is based upon analyses appearing in the literature valid to 
O(pU/u)  as p U / u  --f 0, where p U / u  is the capillary number Ca, holding L,/a fixed, 

t It is assumed that a liquid displaces a gas, or any other fluid, provided the viscosity ratio 
between the former and the latter is very large. The extension to a system consisting of two 
immiscible liquids having arbitrary viscosity ratio is straightforward. 
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with L J a  < 1. Thus, knowledge of the dynamics of the fluids in the inner region 
determines the dynamics of the fluids in the outer region; however, the inverse is not 
true. That is to say, there is an infinity of combinations of 8, L, and l , ,  be they 
velocity dependent or not, that give rise to  the same value of 52. This suggests that 
an explicit model of the dynamics of the fluids in the inner region may not be needed 
for determining the movement of fluids in the outer region. It may only be necessary 
to know the dynamic behaviour of 52, which could possibly be determined from 
experiments on the macroscopic lengthscale. 

Experimental investigations have been reported in the literature over the years 
quantifying the manner in which liquids spread on solid surfaces; however, none 
have been of the kind suggested a t  the end of the previous paragraph. Instead, the 
typical procedure for comparing experiment and theory focuses on the dependence 
of the apparent contact angle on the contact line speed. The apparent contact angle 
is not an actual angle, but rather represents an angle defined in terms of 
experimentally measurable quantities associated with the outer region, which in 
turn, depend very much on the shape of the body of fluids, and usually coincides with 
the actual contact angle under static conditions. For example, in the case of a 
capillary, a common definition of the apparent contact angle is c0s-l 2ha/(a2 + h2),  
where a and h denote the radius of the capillary and the apex height, respectively. 
Most comparisons between theory and experiment follow the procedure of first 
assuming 8 = O,(Q, being the largest value of the contact angle under static 
conditions, measured from within the advancing fluid), and then choosing L, to 
maximize agreement between the experimentally measured and theoretically 
predicted values of the apparent contact angle over a range of contact line speeds 
(Huh & Mason 1977; Lowndes 1980; Hocking & Rivers 1982; Cox 1986). I n  the light 
of the above discussion of 52, it is evident that this procedure can a t  most determine 
the value of 52 over the range of contact-line speeds being investigated, but not the 
terms of which it is composed. Also, this procedure fails to address the more 
fundamental issue of whether or not an analysis which assumes a slip boundary 
condition accurately describes the dynamics of the fluids as seen from the 
macroscopic lengthscale (the outer region). This failure can be illustrated using the 
example of the capillary. Determining 52 at a particular speed based upon the 
apparent contact angle does not guarantee agreement between theory and 
experiment on the dynamics of the fluid within the entire outer region. It only 
assures that the location of the interface, in both theory and experiment, coincides 
at both the contact line and the apex, with no assurance of agreement along the 
remainder of the fluid interface in the outer region. 

Ngan & Dussan V. (1989) present an alternative procedure for comparing theory 
and experiment, and for making use of the theory. They reasoned that the 
appropriateness of using a slip boundary condition to describe the dynamics of the 
fluids in the outer region can be determined by examining the overlap region, the 
domain common to both inner and outer regions. (This should not be confused with 
establishing that the fluids actually slip on the solid surface.) They argued that an 
examination of the shape of the fluid interface would suffice. If a slip boundary 
condition is appropriate, then the fluid interface obeys 

pU 2sin52 r 

CT 52-cos52sinSZ a 
e Q+- ln-, 

where a again denotes the lengthscale associated with the outer region. Here, the 
shape of the fluid interface is given in terms of the dependence of its local slope, 0, 
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relative to that of the solid surface, on the distance, r ,  from the moving contact line. 
Their objective was to measure i9 at numerous values of r ,  and to see if a value of 51 
could be found for which the data would agree with (1.1). Repeated comparisons over 
a range of contact line speeds would determine the dependence of dd on U. They 
reasoned that if 51( U) could be experimentally measured, then the usual assumptions 
in fluid mechanics (including the no-slip boundary condition), with the contact-angle 
boundary condition replaced by (1. I),  would represent a well-posed problem, 
independent of whether or not fluid actually slips on solid surfaces. 

Although the replacement of the contact-angle boundary condition by (1.1) may 
given rise to a well-posed problem, its general utility may be put into question due 
to the appearance of a in (1.1) and in the definition of 9. This suggests that both Q(U) 
and B(r) depend upon the geometry of the device within which they are measured, 
which in turn would imply that Q(U) could only be used to analyse the dynamics of 
fluids in systems whose geometry is identical to that of the measuring device. 
However, this is not the case. The a in both 9 and (1.1) cancel each other, as can be 
demonstrated by substituting the definition of 51 into (l.l), and retaining terms up 
to and including O(pU/a) ,  as pU/u+O. Motivated by the desire to make this 
transparent, Ngan & Dussan V. introduced the parameter 8,, defined to be the value 
of 0 at r = R, R representing a specified distance from the contact line, located within 
the overlap region. Thus, 

where 

Unlike 9, 8, is independent of the geometry of the outer region, i.e. it represents a 
material property of the system. 

Unfortunately, Ngan & Dussan V. were unable to directly measure the slope of the 
fluid interface, so they developed a procedure by which measurements of the apex 
height for oil displacing air through a set of narrow slots could be used to determine 
e(r )  near the contact line. Note that their method differs significantly from that used 
by others described above. Ngan & Dussan V. use multiple measurements taken at 
the same contact line speed, but with slots having different gap widths (Merent 
values of the lengthscale of the outer region), to deduce e(r)  near the contact line, 
while the typical procedure usea many measurements, each taken at different contact 
line speeds to determine a single value for L,. Their results showed good agreement 
with (1.2) ; however, systematic deviations were found between their experimentally 
measured and theoretically determined values of the apex height. 

The objective of this study is the same aa Ngan & Dussan V. (1989). The heart of 
this investigation consists of comparing experimental measurements to a theoretical 
expression of the shape of the fluid interface near the contact line. Instead of using 
(1.2), we use the shape arising in the intermediate region, the additional region in the 
three-region approach of Hocking & Rivers (1982) and Cox (1986). This region is 
located between the inner and outer regions, having a dimensionless length of (pU/a) 
lnrla, the expansions for all three regions being defined as pU/a+O,  holding 
(p /U/a )  ln L,/a fixed. Note that (pula) ln L,/a - 1 in the three-region expansion, 
while (ruU/u) ln L,/a + O  in the two-region one. Thus, the motivation for including the 
intermediate region is that it accounts for the viscous effects on the shape of the fluid 
interface at 0(1) as pU/u+O more accurately than the two-region solution does, at 
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O@U/cr) as ,uU/cr+O. (W. Boender & A. K. Chesters (1986, private communication) 
have shown, for the case of flow through a capillary, excellent agreement within the 
intermediate region between the lowest-order three-region solution and the numerical 
solution of Lowndes (1980), for ,uU/u < 8 x lo-,.) In $2, experiments are presented 
consisting of immersing a glass tube into a bath of silicone oil, which enable direct 
measurements to be made of 8(r)  near the contact line, an advantage over the 
experiments of Ngan & Dussan V. In $3, the explicit form of 8(r) is presented which 
we use to compare theory with experimental measurements. In this section 
alternative expressions are also presented of both Q and (1.2), because these (and 
(1.1)) only apply when two regions are sufficient. We end with a discussion and 
conclusions in $4. 

2. Experiments 
2.1. Procedure 

The experiments consisted of immersing a glass tube with an outer diameter of 
2.54 cm, denoted by 2R,, at a constant speed U, and at an angle a relative to the 
horizontal, into a bath of liquid in a direction parallel to its axis ; refer to figure 1. The 
outer diameter of the tube was chosen so that the shape of the fluid interface in the 
region of observation differed slightly from that formed by an infinite flat plate (see 
Appendix A). These experiments have several obvious advantages over others. (i) 
They need not be restricted to transparent materials, as is the case for the 
displacement of fluids through a capillary or between two parallel plates. (ii) Unlike 
the inconvenience associated with a spreading drop, measurements can be made over 
a range of constant specified contact-line speeds with, in principle, no restrictions 
placed on the contact angle. (iii) The lengthscale of the outer region, denoted by a, 
is (u/pg)i, often referred to as the capillary length, represents the largest lengthscale 
achievable in an outer region dominated by surface tension. This enables 
measurements of the shape of the fluid interface to be made at the smallest possible 
value of r /a  for a given distance, r ,  from the contact line. (iv) The apparatus can 
eaaily be modified to accommodate two immiscible liquids, although we have only 
investigated the case of a liquid displacing air. (v) The shape of the interface close to 
the moving contact line can be accurately measured as a continuous function of 
position. 

The choice of materials, and their preparation are as follows. Silicone oil (Dow 
Corning 200) was used because its low surface tension minimizes the tendency of the 
fluid interface to attract contaminants. Its viscosity, density and surface tension 
were 11.8 P, 0.974 g/cmS, and 21.8 dyn/cm, respectively, throughout the course of 
the experiments. These values were obtained by using a Paar DMA digital density 
meter, a Cannon-Fenske viscometer and a Du Nouy ring, respectively, all 
representing standard laboratory instruments. The container holding the silicone oil 
was a 400 cms Teflon beaker. Initially, it was cleaned with a mild soap solution, then 
rinsed thoroughly with deionized water, and allowed to soak for two days in silicone 
oil. The Teflon beaker was then refilled with fresh silicone oil for the duration of the 
experiments, always kept completely full to minimize contamination. The glass tube 
was cleaned by the following procedure. It was initially soaked for 20 minutes in 
chromic/sulphuric acid (consisting of 15 g K,Cr,O,, 25 ml H,O, and 500 ml H,SO,, 
rinsed thoroughly with deionized water, soaked for an additional 20 minutes in a 
water solution consisting of 20 % by volume HC1, and again rinsed thoroughly with 
deionized water. A jet of nitrogen gas was then used to blow off the water from the 
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(a) Side view (b) Plan view 

FIGURE 1. A sketch of the glass tube being immersed into the teflon beaker filled with silicone oil. 
Two different views are presented: (a) the side view; and ( b )  the plan view. The glass tube is 
immersed off-centre into the beaker, a8 shown in (b) .  The field of view of the video camera is 
indicated in (a).  

tube. If the water was not pushed off the surface as a continuous sheet, then the 
cleaning procedure was repeated. 

The glass tube was attached to a DC motor-driven translation stage (Newport 
Corporation Model 860 Series), which immersed the tube into the bath of oil at  a 
relatively constant speed. Two motors with different gearing were used, one for the 
slowest speed, and another for the remaining speeds. 

The arrangement of the different components of the experimental apparatus is 
presented in figure 2. The glass tube, partially submerged in the silicone oil contained 
within the Teflon beaker, is located between a tungsten light source and a high- 
resolution video camera (Ikagami Model 510) fitted with a Bausch & Lomb 
Monozoom 7 long working distance microscope. The view of the fluid interface is 
from the perspective of figure 1 (a) ,  and is limited to the encircled region containing 
the moving contact line. With this illumination, both the tube and fluid interface 
appear as a shadow. The image is sent to a thermal printer, a video cassette recorder, 
and a television monitor. The image from the printer has a magnification of 300 
times. Measurements are read off a copy made with a Cannon Laser Copier of the 
thermal print, which further magnified the image an additional four times, giving a 
total magnification of 1200 times. 

Special care was taken to align the camera, glass tube, and light source so that the 
image was representative of the interface shape in a plane containing the rod axis. 
Using an optical rotation stage, the glass tube was pivoted to achieve the desired 
angle of immersion, a. Further adjustments were made to the position of the tube to 
ensure that its pivot plane and the fluid interface were perpendicular, and that the 
motor moved the tube in a direction parallel to its axis. The microscope and the beam 
produced by the tungsten light source were placed so that their axes coincided, 
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FIGURE 2. A schematic of the apparatus. 

intersecting the pivot plane of the tube at right angles. The vertical movement of the 
fluid interface was minimized during the immersion of the tube into the silicone oil 
by completely filling the Teflon beaker until the oil spilled over the edge. The angle 
a was measured by superimposing two prints : one of a rather thin wire attached to 
a plumb bob ; and the other of just the glass tube in the same position as when it was 
immersed into the oil. 

A typical picture from the thermal printer appears in figure 3. Note that both the 
surface of the glass tube and the fluid interface generate a series of bands resulting 
from the diffraction of light. If the curvature is constant over that part of the surface 
diffracting the light, then the bands are parallel to the edge of the object, with the 
intensity of the bands being proportional to the magnitude of the curvature parallel 
to the incident light beam (van de Halst 1979). In the present case, the glass tube has 
a constant curvature, but not the fluid interface. Nevertheless it is assumed that the 
bands produced by the fluid interface are parallel to the edge of the fluid interface. 
This is supported by the observation that the variation in spacing between the bands 
is insignificant. The shape of the interface was quantified by measuring the slope of 
the boundary of the large darkened area relative to the surface of the glass tube, 8, 
with a protractor at numerous positions along the boundary. Unfortunately, an 
interference pattern can be detected near the contact line where the diffraction 
patterns meet resulting in a 'kink'. This places a limitation on the closest distance 
to the contact line for which 8 can be measured with the present technique, that is, 
approximately 25 pm. This distance reduces to about 18 pm at our slower speeds, a 
consequence of the decrease in slope of the fluid interface when the contact line speed 
is decreased. 

Approximately fifteen lines were drawn parallel to the solid surface on the enlarged 
copy of the image at positions distributed along the fluid interface. The fluid 
interface was interpreted as a curve connecting picture elements of fixed grey level. 
The slope of the interface, reported at a given position, represents the average of five 
to ten independent readings made with a protractor. Measurements were made at  
positions dong the interface varying in distance from the contact line by between 
approximately 25 to 250 pm the latter representing 0.165a. 

The image obtained from the thermal printer contained a measurable amount of 
systematic distortion, whose magnitude varied with position within the image. The 
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Silicone oil 7- ~ube-4 

FIGURE 3. A typical thermal print of the fluid interface. 

distortion was quantified by analysing a number of images of a straight edge located 
in the field of view close to the images of the fluid interface of interest, the prints of 
the images of the straight edge and fluid interface having been taken at different 
times. It should be noted that the images of the fluid interface do not differ much 
from that of a straight line. Each straight-edge image was characterized by 
measuring its slope relative to the direction of the tangent vector at its end closest 
to the centre of the print, at evenly spaced points along its length. The extent to 
which the values of these slopes differ from zero is a quantitative indication of the 
distortion. The distortion of the image of each fluid interface was removed by 
subtracting from the measured slopes along its length the slopes corresponding to the 
straight-edge image. The slopes of the straight-edge image, at these specific positions, 
were obtained from an evaluation of a second-order polynomial, derived from a least- 
squares fit of the data measured from the image of the straight edge. The final step 
of enlarging the thermal print with the Cannon Laser Copier did not introduce any 
detectable distortion. 
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FIGURE 4 (a-d). For caption see facing page. 
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FIQURE 4. The dependence of the slope of the fluid interface, 8, and the difference between the 
theoretically predicted and experimentally measured slopes, A8, on the radial distance from the 
contact line, r :  (a) Cu = 2.76 x (c) Cu = 2.08 x lo-'; ( d )  Cu = 4.13 x lo-'; 
(e) Ca = 6.47 x lo-'; (f) Cu = 8.74 x lo-'. The experimentally measured values of 8 are denoted by 
0. The curves (i), (ii) and (iii) in each graph denote the composite solution, (3.9), the outer solution, 
(3.3), and the intermediate solution, (3.9) - (3.3) + o,, respectively. The symbol denotes 
(3.3)-0, subtracted from the data. 

(b)  Ca = 1 . 8 6 ~  

An important aspect of the experimental procedure consisted of choosing thermal 
prints for analysis. Several prints of seemingly the same event may differ owing to 
small fluctuations in the motor speed, or disturbances resulting from imperfections 
on the surface of the rod. Two prints were regarded as recording equivalent events if 
upon superposition of the prints the shapes of the interface coincided, and the 
relative orientation of the glass tube agreed to within 0.5O. Thus, a series of at  least 
six prints were taken of any given event. A print was accepted for analysis only if it 
belonged to a set of two or more equivalent prints. 

The principa1 experiments consisted of immersing the glass tube into the bath of 
silicone oil at an angle a equal to 78.5', and at six different speeds corresponding to 
capillary numbers of 2.76 x 1.86 x lo+, 2.08 x 4.13 x 6.47 x and 
8 . 7 4 ~  refer to figure 4(a-f) ,  each graph in the figure representing 
measurements from an individual print. There is no significance to the value of a 
chosen, other than convenience. However, small capillary numbers were desired 
because the objective of these experiments was to compare the shape of the fluid 
interface with that predicted by theory, valid in the limit as pula + 0. 

!5 
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2.2. Error analysis 

There are various errors associated with our measurements, and with the experiments 
themselves. A significant portion arose from the distortion of the image, and the 
methods used for measuring 8(r) and a. We begin by addressing these issues. We end 
with a brief discussion of the errors introduced by the fluctuations in the speed of the 
motor as the tube is immersed into the bath of silicone oil, by cleaning, and by the 
measurements of the material properties of the silicone oil. 

The distortion of the image could have arisen from many factors. It was quantified 
by examining the images of a straight edge located a t  positions close to those of the 
fluid interfaces in figure 4 (refer to Appendix B for details). The measurements of 8(r)  
using the protractor were surprisingly reproducible, the limiting factor being the size 
of the variation of its curvature. We found that the more rapid the variation in the 
curvature, the more difficult the measurement. The standard deviation associated 
with ten repeated measurements of 8 at  a point on the fluid interface was 
approximately 0.25" near the contact line, decreasing to 0.15" at distances beyond 
about 100 pm. At points on the images of the straight edge, the standard deviation 
was about 0.15" throughout. The accuracy of 8 also depended on being able to draw 
lines through points on the images of the fluid interface and the straight edge that 
were parallel to the surface of the tube. While there was very little error associated 
with drawing the lines parallel to each other, our method could give rise to 
approximately a k0.5" deviation in slope between the parallel lines and the surface 
of the tube. Such an error manifests itself in each graph of 8 in figure 4 as a constant 
shift of all the data points in the direction parallel to the &axis. An error of )0.lo, 
accounting for the residual distortion, has been combined with the random errors in 
measuring 8 to give a total error of f0.27" close to the contact line, and f0.18" 
beyond 100 pm. These values ignore the above-discussed uncertainty of f 0.5", the 
justification of which appears in 53.2. The error in a was also estimated to be +0.5", 
primarily resulting from the distortion of the images (see Appendix B). 

When the experiments were performed at the slowest speed, it was evident that the 
tube was not being immersed into the oil at  a constant speed. Upon further 
investigation, we found the slow motor had a reproducible periodic fluctuation of 
f18%, probably produced by poorly manufactured gears. No such problem was 
noticed with our faster motor, which was used in the bulk of our experiments. 

Our material system did not change during the course of our experiments, at  least 
to within our experimental error. This can be assessed by the degree to which the 
material properties of the system, including the properties of the solid surface, 
remain constant. The density, viscosity and surface tension were measured at the 
beginning and conclusion of the investigation. We found that they varied in value by 
less than 1 %. The reproducibility of the solid surface can be assessed by repeating 
experiments after cleaning the glass tube. Upon repeating a limited number of 
experiments, we found agreement to about f0.5". This is comparable with the 
agreement between the analysis of two thermal prints of the same experiment. 

3. Theory and results 
3.1. Theory 

The experimental measurements are compared to theory correct to O( 1) as p U / a  + 
0, holding (pula) In L,/a fixed, obtained from a three-region expansion characterized 
by dimensionless lengths r/Ls,  ( p U / a )  In r /a ,  and r / a ,  where a denotes the capillary 
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length, (u /pg)h .  Throughout this section it is understood that (pU/cr) 1nLJa is held 
fixed whenever p U / u  +- 0. 

The shape of the fluid interface within each of the three regions is as follows. In  the 
intermediate region, as pointed out by Hocking 6 Rivers and Cox, the shape of the 
fluid interface, correct to O(pU/a) as pU/u+O,  is given by 

e - g - w o + d ,  (pum + OLU/U) ~n w, (3.1) 

where do and d,  are constants to be determined by matching the intermediate to the 
inner solution, g-l denotes the inverse function o f g ,  that is to say, x E g-'(g(x)), and 
the function g is defined by 

Since our main concern is with the shape of the fluid interface in the intermediate and 
outer regions, it  suffices to present only the asymptotic form of B(r) in the inner 
region, valid as r/L, + 00, 

2 sin 8 

This represents a general form which has arisen when a slip boundary condition has 
been assumed, also correct to O(pU/a)  as pU/c+O (refer to Ngan t Dussan V. for 
further discussion). The shape of the fluid interface in the outer region, correct to O( 1) 
as pU/u+  0, denoted by fo, retains the same form as under static conditions, the only 
difference being that the term representing the static contact angle, which shall be 
denoted as wo, is now regarded as a constant to be determined by matching the outer 
to the intermediate solution, where 

@ m f o ( r / a ;  @07 R,/a, (3-3) 

its explicit form being the right-hand side of (A 3), with wo replacing 8. 
Matching the intermediate to the inner solution gives 

Substituting (3.4) and (3.5) into (3.1) gives an expression for the shape of the 
interface in the intermediate region of the form 

8 - g- ' (g(@)+ @U/a)lnr/L,+pU/cr(l+Z,(8){8-sin8cos8}/2sin8)), 

correct to O(Ca), as Ca-tO, matching the outer to the inner solution gives 

0, = g-l(do). (3.6) 

(3.7) 

Substituting (3.4) into (3.6) gives 

wo = g - l ( g ( 8 )  + @U/a) In a/L,). 

Comparisons are made between the experimental measurements of 0 and a 
composite solution, a little beyond the region where the intermediate and outer 
solutions overlap. The composite solution is obtained by combining (3.1) and (3.3) to 
givs 

(3.8) = g - w ,  + (pU/a) ln ./a) +fo(r/a; Wo,RT/a,  4 -wo, 
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where do and wo are given by (3.4) and (3.7), respectively, the above expression being 
correct to 0(1) as p U / a - t Q .  Note that (3.8) is equivalent to 

= g - w w 0 )  + (,wa) in ria)  +jaw; 00, RT/a7 01) -w0.  (3.9) 

This is the expression which we use in our comparisons between theory and 
experiments. 

Although wo (referred to as the apparent contact angle by Hocking & Rivers 1982 
and Cox 1986 because of its influence on the shape of the fluid interface in the outer 
region) is a convenient parameter to use when comparing theory and experiment, it 
is not an appropriate parameter to use in (3.1) when (3.1) replaces the contact-angle 
boundary condition. This is a consequence of the dependence of wo on a, the capillary 
length (refer to (3.7)) falsely suggesting that 8(r) ,  in the intermediate region, also 
depends on the lengthscale (and thus, the geometry) of the outer region. (This 
impression may result from substituting (3.6) into (3.1), and ignoring the term 
containing d, because wo has been determined using (3.9), an equation correct to 0(1).)  
For this reason, we follow Ngan & Dussan V. by parameterizing (3.1) in terms of 8, 
(refer to $1) ,  with the alteration that R now denotes a specific location in the 
intermediate region. (From a practical point of view, R may be regarded as 
representing a position within the intermediate region when the solution valid in the 
outer region has an ignorable effect on the composite solution, for example, when 
Ijo(R/a; wO,RT/u, a) -wol is a negligible quantity, for all values of a. Thus, either (3.1) 
or (3.9) can be used.) Evaluating (3.1) at R, gives 

8, N g-'(d,+d,pU/a+ (pU/g)lnR/u), (3.10) 

and using (3.10) to eliminate d,+d,pU/a from (3.1), gives 

q- ' (g (@R)  + (pU/a)  In r/R)- (3.11) 

The fact that 8, depends upon the physics of the inner region, and not on a follows 
from (3.10), (3.4) and (3.5). 

Note that the comments in the introduction regarding SZ remain valid after 
extending its definition to 

SZ = g-'(g(8) + ( p U / a )  In a/L,+pU/a(l +Zt(8){8- sin 8 cos 8}/2 sin 8)), 
It is evident that SZ may be regarded as an apparent contact angle, correct to O(Ca) 
as Ca + 0. Retaining only O( 1) terms gives the same expression as wo. 

3.2. Results 
The objective is to compare, at  a given contact line speed U, the experimentally 
measured dependence of 8 on r to the theoretically predicted expressions presented 
above. Since independent knowledge of do, i.e. wo, is unavailable, our procedure for 
making this comparison must incorporate the determination of its value. 

As mentioned in 82, experimental measurements were made at distances from the 
contact line varying between about 20 and 250 pm. This corresponds to values of r / a  
ranging from 0.013 to 0.165, a being equal to 1511 pm. Since this corresponds, a t  
least in part, to the outer region, the composite solution for 8(r)  is regarded as correct 
to O( 1) as p U / a  + 0. 

The comparisons were made using (3.9). There is only one unknown in this 
equation : the value of the parameter wo. For each set of data, wo was chosen so that 
the theoretical function 8(r)  best fits, in the least-square sense, the data over its entire 
range, refer to the solid line labelled (i) passing through the data in the graphs of 
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u (cm/s) Ca wo (deg) @R (deg) 
5.12 x 10-4 2.76 x 10-4 17.58 14.95 
3.44 x 10-3 1.86 x 10-3 34.78 29.95 
3.86 x 10-3 2.08 x 10-3 30.12 31.12 
7.60 x 10-3 4.12 x 10-3 45.27 38.74 
1.20 x 6.47 x 53.28 45.79 
1.61 x 8.74 x lo-* 58.58 50.10 

TABLE 1. Silicone oil displacing air from the surface of a glass tube at speed U. The values of 
8, are based upon R = cm. 

figure 4. The differences between the theory and the data, denoted by A8, are plotted 
across the upper portion of each graph in the figure. Curve (ii) in this figure represents 
the solution in the outer region, i.e. (3.3), the portion of the solution responding to 
the influence of gravity. While curve (iii) represents the solution in the intermediate 
region, i.e. (3.9)- (3.3) +wo, the portion of the solution being deformed only by the 
viscous forces. The solid circles neighbouring (iii) were obtained by subtracting 
(3.3)-00 from the data. The values of w,, are presented in table 1. 

It should be noted that adding a constant (having absolute value less than 0.5') 
to all the experimental data in any one of the graphs in figure 4 results in a new value 
of oo, within k0.5' of its original value, with no perceptible alteration to the 
appearance in the systematic deviation between theory and experiment from that 
originally calculated (refer to the upper portion of the appropriate graph). This is the 
reason for not including the two errors of approximately f0.5' each, referred to at 
the end of the second paragraph of $2.2, in the estimated error of our measurements 
of 8. Simply put, our attention is focused on the degree of agreement (or lack there 
of) between theory and experiment with respect to the viscous bending of the fluid 
interface, not the precision to which the value of wo can be determined. A calculation 
of the latter would require the inclusion of the two errors referred to above. 

4. Discussion and conclusions 
The objective of this study was to measure the viscous bending of a liquid-air 

interface very close to a moving contact line, and to compare it to solutions of the 
Navier-Stokes equation (assuming the usual hydrodynamic model, including the no- 
slip boundary condition). Our motivation was to determine the validity of a general 
procedure presented by Ngan & Dussan V. for obtaining solutions to problems 
containing moving contact lines, which bypasses the necessity of explicitly 
identifying the physics governing the dynamics of the fluids in the immediate 
vicinity of the moving contact line. The crux of this procedure consists of replacing 
the contact-angle boundary condition by the asymptotic form of the slope of the fluid 
interface in the intermediate region, (3.1) (or equivalently, (3.11)), the constants in 
this expression having been empirically determined. 

We wanted to measure the slope of the fluid interface, 8, as close as possible to the 
moving contact line so that it would be dominated by its asymptotic form as r+O. 
This would have enabled us to use (3.1), an expression correct to O(pU/a)  as 
pU/ r  + 0. Instead, our measurements were in the outer region, which necessitated the 
use of (3.9), the composite solution, an expression known with less accuracy, being 
correct to O(1) as pU/g-+O. Nevertheless, we still wanted the measurements of 8 to 
be made as close to the contact line as possible, so that the behaviour of the fluid 
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interface in the neighbourhood of the contact line would dominate our measurements. 
The heart of the investigation consisted of measuring 8 near the moving contact line 
located on a glass tube being immersed at  a constant speed into a bath of silicone oil, 
and comparing these measurements to (3.9). Measurements were taken at six 
different contact-line speeds. The comparisons between theory and experiment 
appear in figure 4, and the values of wo (the matching constant) at each contact line 
speed appear in table 1. Since the measurements lie within the estimated error, with 
little or no systematic deviations (except at the highest contact-line speed), we 
conclude that our data support using (3.1) as a boundary condition for the shape of 
the fluid interface in the outer region. 

As discussed in the second to last paragraph in $3.1, the matching constant, w,,, 
depends upon the lengthscale of the outer region. Thus, wo(U)  is not a material 
property of the system, i.e. w o ( U )  measured in one geometry of the outer region does 
not apply to the same materials in a different geometry. For this reason, the 
parameter 8,, a property strictly of the materials, was introduced. With this 
parameterization, (3.11) replaces (3.1) as the boundary condition at the contact line. 
The dependence of 8, on U,  for R = cm (10 pm), corresponding to the six 
contact-line speeds of our experiments, is given in table 1, where 8, is obtained by 
evaluating (3.9) at r = Rt. If our images had allowed measurements of 8 at positions 
closer to the contact line, then we would have been able to directly measure @,, and 
the experimental data would have been compared to a theory with no free 
parameters. 

What does the conclusion on the direct measurement of 8, imply about the 
physics governing the dynamics of the fluid in the inner region ? As stated in the 
introduction, it has been established that (3.1) is consistent with a wide variety of 
boundary conditions which permit the fluid to slip at the solid surface. However, 
(3.1) might also be consistent with an even larger class of physical models of the inner 
region. For example, Jansons' (1986) model consisting of an inherently unsteady 
inner region can be viewed from this perspective. This is an area which may deserve 
further research. 

It is appropriate to state that these results share a weakness common to many 
studies based on an asymptotic analysis, a lack of knowledge of the magnitude of the 
expansion parameters which should not be exceeded for the solution to have the 
desired degree of accuracy. In this case, it would be of interest to know if the 
systematic deviation between experiment and theory evident at p U l a  = 8.74 x low3 
is a consequence of an inadequacy in the composite solution, (3.9), resulting from 
using too large a value of p U / a .  

t Even though two quantities appear in this parameterization, it would not be proper to regard 
them as independent. It is easily seen that there exists a family {(R,  e,)} which satisfies (3.1) for 
a given value of wo ; however, once R is specified, then 8, is unique. A criterion for choosing R could 
be 

where e denotes the uncertainty in the measurement of 8. This implies that the contribution to the 
error in 8, arising from the residual influence of the geometry of the outer region on the composite 
solution, (3.9), has the same magnitude as the experimental error in 8. In the present experiment, 
e equals 0.27' so that the above criterion implies an approximate value of R of lop (refer to curve 
(ii) in figure 4). 

e = Ifo(R/a; wo, R,/a, a) -woI for all values of a, 
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Appendix A 
There were two reasons why the meniscus formed outside the tube differed from 

that of a flat plate of infinite extent : (i) the tube had a finite, though large, radius, 
R,, compared to the capillary length, a; and (ii) the axis of the tube was not parallel 
to the direction of gravity, intersecting the undisturbed fluid interface at  an angle of 
78.5O, as opposed to 90°, creating a meniscus varying in shape around the outside of 
the tube. Note that both of these effects were small, with the first dominating the 
second because of the relative smallness in size of in-a (the second effect 
disappearing as R,/a+ co, but the first remaining even if the tube was perfectly 
vertical). Thus, only the lowest-order effect resulting from (i) was calculated, 
equivalent to a static meniscus surrounding a vertical tube having a large radius. 

With this understanding, the equation governing the shape of the meniscus is 
given bv - 

d2h/dr: dhldr, + - h, 
(1 + (dh/dr,)2}' r,{ 1 + (dh/drJ2}4 - 

subject to the boundary conditions 

dh/dr, = tan (@-in) at rc = R,/a, 
h+O as r,+ao, 

where { ( re ,  h(r , ) )  I RT/a < r, < co} represents the location of the meniscus using a 
cylindrical coordinate system, whose origin is on the axis of the tube at the same 
height as the undisturbed liquid-air interface far from the tube, with the z-axis 
pointing in the upward direction, and r, and h are made dimensionless using a. The 
contact angle 8 is measured with respect to the vertical taken from within the liquid. 

Local solutions near (R,/a,h(R,/a)) were obtained for the fist two terms of an 
asymptotic expansion, valid in the limit as R,/a + co, of the form 

a 
h h,(z; 8) +-hhl(z ;  8) +. . . , 

RT 

where h, - d,+d,X2+d3x3+ ..., 
and x denotes rc-RT/a,  the term h, corresponding to the shape of a meniscus 
adjacent to a flat plate. 

The exact solution for h, is well known, given parametrically by 

h, = 2 sin (:(in - e)),  
x = - 2 cos (;(in - 0)) -In tan (i(@ - 6 ) )  + 2 cos (&(in - 8)) + ln tan (i(+fi - 8)), 

and it is straightforward to show that 

0 - 8 + 2r sin (+(in - 8)) -9." sin (in - 8) 
a 

+-{r(d,  +sin (in - 8)) - r2 sin ($(in - 8)) cos (in - 8)}, (A 1) 
RT 

where r and 0 retain the same meaning as in 5 1. An evaluation of do requires 
knowledge of the solution for h, over the entire interval X E  [0, ao). Huh & Scriven 
(1969) have verified that the following formula of Ferguson is correct to within 1 Yo 
for R,/a >, 1 ; 
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This implies 
R 

Substituting (A2)  into (A 1),  replacing i n - 0  by a-8 (implying in-(a-@) 
replaces 8), and replacing 8 by in - (a - 8) gives the formula used in this study : 

+sin(a-8)}]:--(-) 1 r 2  sin(a-8). (A 3) 
a 2 a  

Appendix B 
In order to quantify our method for removing the systematic distortion in 8(r) ,  we 

had to establish that our ‘straight edge’ was indeed straight. This was accomplished 
by applying our distortion-removing method to an image of a static fluid interface, 
whose shape is known to satisfy (A 3), with 8, replacing 8 for present purposes. The 
straight edge was the glass tube used in our experiments. Figure 5 gives the difference 
between the above theoretical value and the experimentally measured values of 8, 
denoted by A8, along a segment of a static interface, before and after the distortion 
was removed from the experimental data. The value of 8, was chosen to make the 
theory fit best, in the least-squares sense, the experimental data. Since the value of 
A0 is less than approximately f0.2” after removing the distortion, we concluded 
that the tube was straight, at least for our purposes. Evidentally, the image of the 
static fluid interface was located in a region having a minimal amount of distortion. 

Since the degree of distortion varied across the image, it was necessary to establish 
that the variation was not significant between the positions of the straight edge used 
to remove the distortion and that of the dynamic interfaces whose shapes were being 
corrected. We did this by using one image of the straight edge to remove the 
distortion from another image of the straight edge located at  a neighbouring position 
and rotated slightly. This was done within that part of the field of view where the 
images of the fluid interface were located. The degree of separation and rotation were 
chosen to be somewhat larger than those corresponding to the images of the straight 
edges and fluid interface. Figure 6 illustrates a typical case. The large angular 
variation corresponding to the uncorrected image as an indication of the extent of 
the distortion. The small random angular variation about a horizontal line, 
corresponding to the corrected image, indicates the success of our method at 
removing the distortion. 

The distortion analysed thus far represents ‘ short-range ’ distortion, the relative 
distortion along the segments of the fluid interface over which 8 was measured in the 
graphs of figure 4. This follows directly from the fact that the slopes along the images 
of the straight edges were measured relative to the tangents at their end points 
closest to the centres of the prints. The ‘long-range’ distortion, represented by the 
errors in the directions of these tangents relative to a common datum, such as the 
true vertical, as determined with the plumb bob, was not measured beyond 
estimating that it did not exceed k0.5”. Thus, our method of removing the distortion 
succeeded in ‘straightening’ the image of the straight edge illustrated in figure 6, 
that is to say, in eliminating the short-range distortion ; however, significant long- 
range distortion, represented in this case by the accuracy of the value of 8 of the 
horizontal line in the figure, 78.68”, remains, having a value of k0.5’. This is the 
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principal reason for basing each of the graphs in figure 4 on a single image of the fluid 
interface, our objective being the measurement of the viscous deformation to the 
fluid interface, and not the attainment of archival data for this particular material 
system. This also accounts for our estimate of the error in measuring a. 
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